Three-step estimation of latent Markov models with covariates
نویسندگان
چکیده
We propose a modified version of the three-step estimation method for the latent class model with covariates, which may be used to estimate a latent Markov (LM) model with individual covariates and possible dropout. We illustrate the proposed approach through an application finalized to the study of the health status of elderly people hosted in Italian nursing homes. This application is based on an LM model which accounts for informative missing responses and dropout due to the death of a patient. In the analysis of this dataset, which is also characterized by a large number of response variables and covariates, we found the proposed three-step approach more stable with respect to the standard maximum likelihood method.
منابع مشابه
Evaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes
Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded DNA virus. There were two approaches for prediction of each Markov Model parameter,...
متن کاملLatent Class Models for Diary Method Data: Parameter Estimation by Local Computations
The increasing use of diary methods calls for the development of appropriate statistical methods. For the resulting panel data, latent Markov models can be used to model both individual differences and temporal dynamics. The computational burden associated with these models can be overcome by exploiting the conditional independence relations implied by the model. This is done by associating a p...
متن کاملComparative study of predictive ability of AIDS incidence in HIV positive people using Markov model according to two criteria, WHO and CDC in CD4 cell categorization
Background: The Multi state Markov models have extensively application with categorization of laboratory marker of CD4 cells for evaluation of HIV disease progression. These models with different states result in different effects of covariates and prediction of HIV disease trend. The main purpose of this study was comparison of four and five states models with the three- state in order to sele...
متن کاملBayesian Models for Time Series with Covariates, Trend, Seasonality, Autoregression and Outliers
Bayesian methods furnish an attractive approach to time series data analysis. This article proposes the forecasting models that can detect trend, seasonality, auto regression and outliers in time series data related to some covariates. Cumulative Weibull distribution functions for trend, dummy variables for seasonality, binary selections for outliers and latent autoregression for autocorrelated...
متن کاملModel-based time-varying clustering of multivariate longitudinal data with covariates and outliers
A class of multivariate linear models under the longitudinal setting, in which unobserved heterogeneity may evolve over time, is introduced. A latent structure is considered to model heterogeneity, having a discrete support and following a first-order Markov chain. Heavy-tailed multivariate distributions are introduced to deal with outliers. Maximum likelihood estimation is performed to estimat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 83 شماره
صفحات -
تاریخ انتشار 2015